In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering.
نویسندگان
چکیده
Increasing evidence has revealed that the surface characteristics of biomaterials, such as chemical composition, stiffness, and topography, especially nanotopography, significantly influence cell growth and differentiation. In this study, we examined the effect of surface biomimetic apatite nanostructure of a new hydroxyapatite-coated genipin-chitosan conjugation scaffold (HGCCS) on cell shape, cytoskeleton organization, and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in vitro. Cell shape and cytoskeleton organization showed significant differences between cells cultured on genipin-cross-linked chitosan framework and those cultured on HGCCS with surface apatite network-like nanostructure after 7 days of incubation in the osteogenic medium. The result of specific alkaline phosphatase activity as an indicator of osteogenic differentiation showed that the alkaline phosphatase activity of rat bone marrow-derived mesenchymal stem cells was higher on HGCCS. Based on quantitative real-time polymerase chain reaction, HGCCS induced highest mRNA expression of osteogenic differentiation makers, runt-related transcription factor 2 by 7 days, osteopontin by 7 days, and osteocalcin by 14 days, respectively. The enhanced ability of cells on HGCCS to produce mineralized extracellular matrix and nodules was also assessed on day 14 with Alizarin red staining. The results of this study suggest that the surface biomimetic apatite nanostructure of HGCCS is a critical signal cue to promoting osteogenic differentiation in vitro. These findings open a new research avenue to controlling stem cell lineage commitment and provide a promising scaffold for bone tissue engineering.
منابع مشابه
Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility.
Biomaterial surfaces and their nanostructures can significantly influence cell growth and viability. Thus, manipulating surface characteristics of scaffolds can be a potential strategy to control cell functions for stem cell tissue engineering. In this study, in order to construct a hydroxyapatite (HAp) coated genipin-chitosan conjugation scaffold (HGCCS) with a well-defined HAp nanostructured ...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملIn vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes
Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 17 9-10 شماره
صفحات -
تاریخ انتشار 2011